Final Presentation

McConnell Dr. and Pine Knoll Dr. Roundabout Design

BETR Engineering Brian Carpenter Emery Ellsworth Tessa Huettl Rose Voyles

Nov. 13, 2020

Introduction

- Background
 - Focus on intersection and effects on I-17 ramp
- Purpose
 - Alleviate congestion at Pine Knoll Dr. and McConnell Dr.
- Client
 - Nate Reisner, ADOT
 - Stakeholders
 - NAU
 - NAIPTA
 - City of Flagstaff

City of Flagstaff, City of Flagstaff Crest. 2020.

Northern Arizona Intergovernmental Public Transportation Authority, NAIPTA Logo. 2017.

Arizona Department of Transportation, ADOT Logo. 2017.

Northern Arizona University, NAU Logo. 2020.

Location

Tasks

- Task 1: Examine Existing Data
- Task 2: Site Investigation
- Task 3: Existing Site Design
- Task 4: Roundabout Design and Check
- Task 5: Signage and Striping
- Task 6: Temporary Traffic Control

- Task 7: Plan Set Production
- Task 8: Drainage Analysis
- Task 9: Traffic Analysis
- Task 10: Evaluate Project Impacts
- Task 11: Project Submittals
- Task 12: Project Management

Examine Existing Data

- Traffic Data
 - City of Flagstaff
- Site Features
 - City of Flagstaff ArcMap database and NAU area
- Right of Ways
 - Coconino County Assessor's office
 - NAU and State of Arizona properties

Site Investigation

Existing Site Conditions

- Existing elements of the roadway
- New roadway features

Drainage Map

- Drainage observed during rainstorm
- Approximate drainage areas and drainage outlet

Task 3

Existing Site Map

- Majority of linework for intersection area came directly from NAU
- Linework for west of intersection was approximated from aerial image and/or site investigation
- Ground contour data came from the City of Flagstaff GIS data

Traffic Data Manipulation

- Creation of turning movement counts and growing traffic volumes
 - I-17 turning movements added to McConnell Dr./Pine Knoll Dr. roundabout volumes
 - 0.8% Growth rate
 - Calculated from 2007 and 2019 AADT data for area

Preliminary Geometry

Inscribed Circle Diameter

 Recommended range of diameter for roundabout inscribed circle is based on design vehicle (WB-67)

Existing Roadway Centerlines

 Roadway centerlines determined from existing edge-ofpavement lines

Number of Lanes

Used Rodel models to produce LOS of C or higher

Alternative Development

Volumes

• Grown traffic volumes

I-17 Exit ramp

 Ramp traffic was routed through Pine Knoll/McConnell Dr or secondary roundabout

Bus Pullout

• Inclusion of bus bay design

Decision Matrix Breakdown

Criterion		Woight	Alternatives			
		weight	Single	Double	Bypass	
Relative Cost		25%	Fill =21863 cu ft, Construction = 5759 sq ft	Fill = 11948 cu ft, Construction = 7790 sq ft	Fill = 11711 cu ft, Constuction = 5759 sq ft	
Ped. Safety		20%	2 lanes to cross	3 lanes to cross	2 lanes to cross	
Likelihood of accidents		15%	6 points of conflict	18 points of conflict	7 points of conflict	
LOS		10%	А	А	С	
User Interaction	Complexity	15%	2 roundabouts with 1 lane	1 roundabout with 2 lanes	1 roundabout with 1-2 lanes	
	Discomfort	5%	100% of vehicles enter a roundabout	100% of vehicles enter a roundabout	88% of vehicles enter a roundabout	
	Predictability	10%	3 drivers entering roundabout at once	5 drivers entering roundabout at once	3 drivers entering roundabout at once	

Alternative Selection

			Alternatives		
Crite	Weight	Single	Double	Bypass	
Relative Cost		25%	2	3	4
Ped. Safety		20%	4	3	4
Likelihood of accidents		15%	4	1	4
LOS		10%	5	5	3
	Complexity	15%	2	2	4
User	Discomfort	5%	3	3	4
Interaction	Predictability	10%	3	2	3
	Total	100%	3.2	2.7	3.8

Roundabout Redesign and Check

- Bypass Lane was chosen through decision matrix
- Redesign began with assessment of Fastest Route safety check
- Cross-check with FHWA guidebook for lane widths, entry angles, and allowable speeds
- The input into Rodel to check efficiency (LOS)

Signing and Striping

Signing and striping requirements were referenced from:

- The City of Flagstaff Engineering Design Standards
- Federal Highway Administration Roundabout Guide
- Manual on Uniform Traffic Control Devices (MUTCD)

Plan set includes sheets detailing the location, size and type of sign or pavement marking to be installed in the completed roundabout.

Temporary Traffic Control

- Illustrates closure locations
- Shows locations of temporary signage
- Locations of barriers and signs used to close off the construction zone

Plan Set Production

Drainage

- Total drainage runoff through intersection determined using the rational method.
- Runoff was calculated using the rainfall intensity values for a storm duration of 5-minutes for both the 10-year and 100-year storm event
- Pre-Development:
 - 10-year: 14.2 cfs
 - 100-year: 26.2 cfs
- Post-Development:
 - 10-year: 15.0 cfs
 - 100-year: 27.7 cfs

Traffic Analysis

- Final geometry added into Rodel
- •Overall LOS C for intersection performing at peak hour
- Intersection meets capacity requirements

Leg Names	Level of Service per Leg	Overall Level of Service
McConnell (WB)	В	
McConnell (EB)	В	С
Pine Knoll Dr. (NB)	D	

Project Impacts

Social	
Community buy-inMobilityEquitable travel	
Economic	
 Capital costs Maintenance costs Costs to society (crashes) 	
Environmental	
 Emissions Drainage Vegetation	

Conclusions and Recommendations

- In Conclusion: the presented design meets to project goals of utilizing a roundabout to improve traffic congestion at the site
- Recommendations
 - Existing bus bay: create one-way parking lot by adding curb cut
 - P62 (South Commuter) parking lot entrance: regrade lot entrance to improve slope for drainage and traffic

